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SUMMARY

Biomass additivity is a desirable characteristic of a system of equations for predicting components and total biomass, since equations 
independently adjusted generate biologically inconsistent results. The aim of this study was to fit and compare three methods for 
modelling biomass: (i) total biomass individual regression, (ii) total biomass regression function calculated as the sum of separate 
biomass components, and (iii) simultaneous equations of biomass components based on Nonlinear Seemingly Unrelated Regression. 
A total of 208 trees of Eucalyptus dunnii and Eucalyptus grandis were harvested and destructively sampled to record above-ground 
biomass. Results indicate that a system of equations adjusted by simultaneous equations provides accurate biomass estimations, 
guaranteeing additivity. This model system showed good fit and good prediction performance, given that the correlation coefficient 
was higher than 97 % for total above-ground biomass, for both species; whereas root mean square error was 23.9 kg and 30.2 kg for  
E. grandis and E. dunnii, respectively. A system of biomass equations was developed for each eucalyptus species, such that the sum 
of the estimations of the biomass components equaled the estimate of above-ground biomass. Results showed that the systems of 
equations have high potential for improving the accuracy of individual tree above-ground biomass estimates for both species.

Key words: Additive biomass equations, biomass partitioning, NSUR, system of equations. 

RESUMEN

La aditividad de las ecuaciones empeladas para predecir los componentes y la biomasa total es una característica deseable de un 
sistema de ecuaciones. Las ecuaciones ajustadas independientemente generan resultados biológicamente inconsistentes. El objetivo 
de este estudio fue ajustar y comparar tres métodos para estimar la biomasa de rodales de Eucalyptus: (i) regresión clásica individual, 
(ii) estimación de biomasa total calculada como la suma de las ecuaciones individuales de las fracciones, y (iii) ecuaciones simultáneas 
aparentemente no relacionadas. Un total de 208 árboles de Eucalyptus dunnii y Eucalyptus grandis fueron cosechados y muestreados 
destructivamente para registrar la biomasa aérea. Los resultados indican que el sistema de ecuaciones simultáneas proporciona 
estimaciones precisas de biomasa, garantizando la aditividad. Este sistema mostró un alto ajuste y desempeño de predicción, dado 
que registró un coeficiente de determinación mayor al 97 % para la biomasa total, en ambas especies, mientras que la raíz del error 
cuadrático medio fue 23,9 kg  y 30,2 kg  para E. grandis y E. dunnii, respectivamente. Se desarrolló un sistema de ecuaciones de 
biomasa para cada especie de eucalipto, de modo que la suma de las estimaciones de las fracciones equivalía a la estimación de 
biomasa total. Los resultados muestran que los sistemas de ecuaciones tienen un gran potencial para mejorar la precisión de las 
estimaciones individuales de biomasa aérea de árboles para ambas especies.

Palabras claves: ecuaciones aditivas de biomasa, partición de biomasa, NSUR, sistema de ecuaciones.

INTRODUCTION

Estimates of the components of the total biomass of in-
dividual trees are of interest for researchers and forest ma-
nagers, either for scientific or commercial purposes. This 

information is critical for estimating global carbon storage 
and assessing ecosystem responses to climate change and 
anthropogenic disturbance (Ni-Meister et al. 2010). It is 
also important for commercial uses and national develop-
ment planning, as well as for scientific studies of ecosys-
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tem productivity and energy and nutrient flows. Therefore, 
information on the above-ground biomass (AGB) is nee-
ded for estimation of site productivity, and stand and tree 
growth and yield (Poudel and Temesgen 2015).

The traditional numerical approaches for estimating 
tree biomass from inventory data are biomass expansion 
factors and biomass equations (allometric models). Allo-
metric models are common tools for biomass prediction 
(Lei and Shirong 2016), in particular for individual trees, 
because biomass measurement in the field is difficult and 
time consuming. Instead, empirical relationships between 
biomass and easily measured stand variables, such as tree 
diameter at breast height (d) and total height (h), are deve-
loped through a regression analysis (Parresol 1999).

In Uruguay, several growth models have been develo-
ped for Eucalyptus  globulus Labill, Eucalyptus grandis 
W. Hill ex Maiden, Eucalyptus dunnii Maiden and Pi-
nus taeda L., for both solid wood and cellulose produc-
tion (Rachid-Casnati et al. 2014, Hirigoyen et al. 2018, 
Resquin et al. 2018). It is necessary to adjust systems 
for Uruguayan plantations, to avoid the use of allometric 
models from elsewhere or based on unsuitable ranges of 
predictive variables, which can lead to over- or under-
estimation of AGB. Traditionally, component models and 
individual AGB are independently fitted using the ordinary 
least squares method (OLS) or the weighted least method 
(WLS), without considering the inherent relationship bet-
ween measured components and total tree biomass. Thus, 
estimates are less accurate and do not reflect the additive 
relationship among component equations (Bi et al. 2004). 
Usually, the sum of the biomass of the components (in 
this study: branch, foliage, stem) predicted through indi-
vidual models does not correspond to the value obtained 
by applying AGB equations. However, additivity is a de-
sired and logical feature of equations for estimating bio-
mass components. According to Bi et al. (2004), the lack 
of additivity means that the sum of the predicted values 
from biomass models of tree components does not match 
the value obtained from models predicting the total AGB 
of the trees. A simultaneous adjustment allows verifying 
if the sum of the equations of each fraction is equal to the 
AGB equation, guaranteeing the additivity of the biomass 
fraction and improving the statistical adjustment (San-
quetta et al. 2019).

Since Parresol (2001) introduced the use of seemin-
gly unrelated regression (SUR) for simultaneously fitting 
equations for component and total biomass, SUR and its 
nonlinear version  (NSUR) have been applied by many 
forest researchers (Poudel and Temesgen 2015). SUR 
ensures the additivity among components and total bio-
mass predictions, taking into account possible correlated 
errors. This study attempts to identify the best total tree 
biomass estimation method, for Eucalyptus spp. forests 
of Uruguay. The aim was to compare three methods for 
modelling the AGB of Eucalyptus dunnii and Eucalyptus 
grandis plantations in Uruguay. The compatible biomass 

models assessed were: i) above-ground biomass individual 
regression: WLS individual approach; ii) above-ground 
biomass regression calculated as the sum of separate bio-
mass components: WLS sum approach; iii) simultaneous 
biomass equations based on nonlinear seemingly unre-
lated regressions: NSUR approach. Since it is not prac-
tical to fell trees to develop equations for each biomass 
component, and because destructive sampling is tedious 
and expensive, biomass systems equations that depend on 
individual tree variables such as d and h could be useful. 
The NSUR procedure comprises better biological proper-
ties and statistics to adjust allometric equations for fraction 
and total biomass.

METHODS

Study area. The sampling was located in three different 
regions prioritized for forest plantations (Lanfranco and 
Sapriza 2011): northwest (32° 18′ 18″S, 57° 44′ 0.6″ W, 
next to Guichon city, Paysandu); central east (33° 01′ 43″ 
S, 55° 31′ 08″ W, next to Sarandi del Yi, Durazno) and 
central west (33° 21′ 06″ S, 56° 41′ 17″ W, near Trinidad 
city, Flores). These zones have a temperate subtropical cli-
mate, with mean annual temperature of 18 °C (12 °C in 
the coldest month, 24 °C in the warmest month) and mean 
annual rainfall  between 1,300 and 1,400 mm (Castaño et 
al. 2011).

Field data collection. The AGB data used in this study 
correspond to the PROBIO project carried out by Natio-
nal Research Institute of Agriculture Research (INIA) in 
2015 (PROBIO 2015). Data were collected from 90 trees 
of Eucalyptus dunnii and 118 trees of Eucalyptus grandis. 
All 208 trees were harvested and destructively sampled as 
follows: stems were cut into 1-m sections and each sec-
tion was weighed; total height (H) and diameter at breast 
height (D, 1.3 m above the ground) were measured. For 
each tree, two discs (3 cm thick) were cut, at 50 % and 
75 % of commercial height, and weighed. One of the 
discs was weighed in the field, with and without bark, and 
oven-dried to constant weight (70±2 ºC) to estimate dry 
matter percentage (PROBIO 2015). All the green and dry 
branches and foliage in each crown were classified and 
weighed in the field. Samples of 0.5 kg of branches and 
foliage were taken to the laboratory for moisture content 
determination. The dry weights of branches and foliage 
per tree were calculated by multiplying fresh weight by 
dry weight-fresh weight ratios determined in the labora-
tory through sampling. The dry weight of each stem sec-
tion with bark was calculated considering green weight 
and the average ratio of dry weight to green weight of 
discs sampled at the large and small end of each section. 
The dry weights of stem wood and bark were calculated 
using the average bark to stem wood dry weight ratio ob-
tained from discs sampled at both ends. The total stem 
biomass of each tree was calculated by summing the dry 
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weight of all stem sections. Descriptive statistics of total 
above-ground biomass, biomass components and other 
variables are shown in table 1. 

Model assessment and validation. To evaluate the fit of 
models, their accuracy and precision were compared 
through the graphical and numerical analysis of residuals. 
Statistical criteria applied were: the adjusted coefficient of 
determination (R²-adj), during model development stages; 
the correlation coefficient (R2), which is a simple linear re-
gression between observed and predicted values, employed 
as a classical method of evaluation of a nonlinear model; 
and the Akaike information criterion (AIC), to measure the 
relative quality of each model (Myers 1990). The model 
performance for the different approaches was assessed ba-
sed on estimation errors, using the root-mean-square error 
(RMSE) to indicate the absolute value of the error (Myers 
1990).These expressions are summarized as follows:

[1]

[2]

[3]

Where  are the measured and estimated values 
of the dependent variable, respectively, n is the total 
number of observations and p is the number of equation 
parameters. is the correlation coefficient for linear 
regression between observed and predicted values. 

In addition, it is necessary to assess whether the good-
ness of fit reflects the quality of predictions, through vali-
dation (Huang 2002). This analysis assists the selection of 
the best model. To evaluate the prediction quality of the 
system of simultaneous equations, cross-validation was 
performed with the fitting dataset (Myers 1990). Cross-
validation in forestry is a common practice (Hirigoyen et 
al. 2018) for model selection through consideration of the 
predictive ability of the assessed model. It consists of the 
calculation of the residuals of the i-th observation using 
parameters estimated using all the data except the i-th 
observation. This process is named leave-one-out cross-
validation (Kohavi 1995). The residue removed from the 
i-th observation is the difference between the observed va-
lue of the modelled variable and the value estimated by a 
function that has been adjusted to all the data except the 
i-th observation. The sum of squares of eliminated resi-
dues is called PRESS (predicted residual sum of squares) 
(Picard and Cook 1984) and it is used to calculate the se-
lection criteria or root-mean-square-error for cross-valida-
tion (RMSEcv). A close agreement between RMSEcv and 
RMSE indicates that the model is not over-fitting the data 
and has a good predictive value. The efficiency of the mo-
del represents the proportion of the variability observed in 
the original data that is explained by the model, and it va-
ries between 0 (without adjustment) and 1 (perfect fit). The 
statistics of validation were calculated as follows: 

	                                     [4]
		                        

		
			   [5]

Table 1.	 Allometric and biomass characteristics of Eucalyptus grandis and Eucalyptus dunnii. Diameter at breast height (d, cm), total 
tree height (h, m), stem biomass (SB), foliage biomass (LB), branches biomass (BB) and above-ground biomass (AGB).
	 Características alométricas y biomasa de Eucalyptus grandis y Eucalyptus dunnii.  Diámetro a la altura del pecho (d, cm), altura total del 
árbol (h, m); biomasa del fuste (SB); biomasa de follaje (LB); ramas de biomasa (BB); y biomasa aérea total (AGB).

Species Summary d 
(cm)

h 
(m)

Age 
(years)

SB
(kg)

LB 
(kg)

BB 
(kg)

AGB 
(kg)

E. dunnii (n=90) Min 9.9 12.6 6.3 6.4 2.8 2.1 11.8

Mean 18.8 23.9 8.6 344.6 21.3 20.9 389.1

Max 31.6 33.2 12.0 1133.7 60.8 58.4 1223.3

Sd 5.2 4.8 2.89 246.7 13.5 14.5 272.0

E. grandis (n=118) Min 11.1 16.6 6.5 69.8 1.2 2.0 73.3

Mean 22.3 26.7 10.0 485.7 31.4 47.3 564.5

Max 36.9 30.8 17.0 1725.7 114.0 177.8 1.914

  Sd 5.6 5.3 3.5 332.4 25.0 33.9 377.3

𝑅𝑅2𝑎𝑎𝑎𝑎𝑎𝑎 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦̅𝑦)2𝑛𝑛

𝑖𝑖=1
(𝑛𝑛 − 1

𝑛𝑛 − 𝑝𝑝)                                                                                                                              

𝑅𝑅2 = 𝑟𝑟𝑦𝑦𝑖𝑖𝑦𝑦𝑦̂𝑦                                                                                                                                                                                                          
2                

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝑦𝑦𝑖𝑖−𝑦̂𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛                                                                                                                                             

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =∑(𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖−1)2
𝑛𝑛

𝑖𝑖=1
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = √∑ (𝑦𝑦𝑖𝑖−𝑦̂𝑦𝑖𝑖−𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛 − 𝑝𝑝                   
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[6]

Where  are the measured and estimated values 
of the dependent variable, respectively, n is the total num-
ber of observations and p is the number of equation para-
meters.

The Proc sql program of SAS (SAS Institute 2004) 
was used to perform the routine. The characteristic hete-
roscedasticity of the biomass data was evaluated with the 
White test (SAS Institute 2004), and was corrected with a 
residual variance power function as the weighting factor. 

Individual model selection: OLS individual and WLS sum 
approaches. Twenty-seven linear and nonlinear regression 
models available in literature were tested for each tree bio-
mass component and total tree biomass (Appendix). WLS 
was applied to homogenize residuals and to improve the 
statistics of fit (Parresol 2001, Dong et al. 2018). For each 
biomass component, only the models in which all parame-
ters were significant at P < 0.05 were considered. The best 
model was selected considering the following statistics: the 
lowest values for the AIC and RMSE, and the largest pro-
portion of the variance explained by the model (R²-adj). The 
relative error (RE%) of the predicted biomass (AGBpredict) 
versus the total measured biomass (AGBmeasured) was calcu-
lated to evaluate the general predictive power of the selec-
ted models (Chave et al. 2005). Mean relative error repre-
sents the general bias of the model, whereas precision was 
assessed through the standard deviation of the relative error.

[7]

Additive biomass equations: NSUR approach. Individual 
models selected for each biomass component were fitted 
simultaneously using NSUR in an additive system of equa-
tions (Parresol 2001). NSUR accounts for the contempo-
raneous correlations among regression residuals, resulting 
in a lower variance of regression coefficients. It also incor-
porates the additivity property into equation systems ob-
tained by constraining the parameters (Parresol 2001). The 
model residuals of biomass data always exhibit heterosce-
dasticity, and the variance of the error is often functionally 
related to one or more explanatory variables of the model 
(Parresol 2001, Riofrío et al. 2015). To deal with the he-
teroscedasticity and achieve minimum variance estimates, 
a weight function was defined and used for the biomass 
models for each component. Caillez and Alder (1980),  
working with compatible taper and volume functions, pro-
posed a power function of the variable  (the square 
of d multiplied by h) as weight function:
						    

[8]

ME=1 − ∑ (𝑦𝑦𝑖𝑖−𝑦̂𝑦𝑖𝑖−𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦−𝑦̅𝑦𝑖𝑖−1)2𝑛𝑛
𝑖𝑖=1

(𝑛𝑛−1𝑛𝑛−𝑝𝑝) 
Where, d is tree diameter at breast height, h is total height 
total height and k as power. 

It was programmed in the model procedure of SAS/
ETS (SAS Institute 2004). Statistical analyses and plots 
were performed using R statistical software (R Core Team 
2015), while SAS statistical software (SAS Institute 2004) 
was used for fitting the weighted nonlinear systems of 
equations using NSUR.

RESULTS

Allometric relationships. The stem, branches, foliage and 
total biomass of the sampled trees and their relationships 
with d and h are shown in figure 1. In all cases an exponen-
tial relationship was observed. Exponential models with 
d and h as independent variables were adjusted and were 
evaluated using R²-adj.

For both species, d was strongly and significantly co-
rrelated with stem biomass and AGB, accounting for 95 % 
and 94 % of the variation for E. grandis and E. dunnii, res-
pectively. For E. dunnii, the R²-adj values for the branch 
and foliage fractions were 70 % and 66 %, respectively, in-
dicating moderate correlation; however, these values were 
lower for E. grandis (68 and 54 %, respectively). For h, all 
the values were lower in E. grandis, 34 %, 25 %, 74 % and 
66 % for branches, foliage, stem and AGB, respectively, 
while E. dunnii had values of 85 %, 88 %, 74 % and 71 % 
for AGB, stem, branches and foliage, respectively. 

Individual biomass equations. For individual biomass 
components, the same models were selected for the WLS 
individual and WLS sum approaches. For the WLS sum 
approach, total k was estimated as the sum of the inde-
pendent tree components models. The models selected for 
biomass components and AGB with their corresponding 
statistics of fit are given in table 2. For E. grandis, the va-
lues of the White test were similar. For E. grandis, models 
considering only d showed the best fit, whereas for E. dun-
nii, the selected models included d and h (table 2). 

The accuracy of adjusted models was verified by plot-
ting the correlation between model predictions and ob-
served biomass fractions (figure 2). All parameters were 
significant at the 95 % confidence level. All models fitted 
total AGB data well, with the model R²-adj ranging from 
0.96 to 0.97. The minor adjust was obtained for foliage and 
branches components. 

Incompatibility was observed between AGB and the 
sum of the fractions estimated independently. Therefore, 
there was inconsistency between AGB estimation and the 
sum of the estimated values for biomass fractions, indica-
ting the need to apply simultaneous adjustments to ensure 
the additivity of biomass fractions.

Additive biomass equations. For the NSUR approach, the 
models for biomass components (table 3) were fitted si-

𝜎𝜎2𝑖𝑖 = (𝑑𝑑𝑖𝑖2ℎ𝑖𝑖)𝑘𝑘 

𝑅𝑅𝑅𝑅% =  100 ∗ (𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝– 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)/𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
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Figure 1.	Relationships between total (A), branch (B), foliage (C), stem (D) biomass and diameter at breast height and total height for 
Eucalyptus dunnii (upper panel) and Eucalypts grandis (bottom panel).
	 Relaciones entre biomasa total (A), ramas (B), follaje (C) y fuste (D) y diámetro a la altura del pecho y altura total para Eucalyptus dunnii 
(panel superior) y Eucalyptus grandis (panel inferior).

 

Table 2.	 Allometric equations for tree biomass estimation by fractions (kg) and overall aboveground dry weight biomass (AGB, kg) 
for Eucalyptus grandis and Eucalyptus dunnii using WLS regression. Independent variables are total height (h, m) and diameter at 
breast height (d, cm). Adjusted coefficient of determination (R2-adj), root mean squared error (RMSE, kg) and White test.
	 Ecuaciones alométricas para la estimación de biomasa arbórea por fracciones (kg) y biomasa total sobre el suelo (AGB, kg) para Eucalyptus 
grandis y Eucalyptus dunnii empleando regresión WLS. Las variables independientes son la altura total (h, m) y el diámetro a la altura del pecho (d, 
cm). Coeficiente de determinación ajustado (R2-adj), raíz del error cuadrático medio (RMSE, kg) y prueba de White.

Species Biomass 
fractions 

Biomass
equation

Model
number

RMSE
(kg) R²-adj Weighting 

factor
White 

test

E. grandis Foliage exp (-2.561 + 3.995ln(d)-1.997ln(h)) 15 11.8 0.77 1/d2.3 0.08

Branches exp (-1.577 + 3.589l n(d)-1.776ln(h)) 15 13.1 0.85 1/d2.46 0.09

Stem 0.0447d2.069 h0.835 3 24.2 0.98 1/d2.86 0.11

AGB d2 (0.656+0.0005H) 22 34.5 0.97 1/d1.87 0.60

E. dunnii Foliage exp (-3.248 + 2.890ln(d)-0.712ln(h)) 15 4.76 0.89 1/d 0.80

Branches exp (-3.046 + 2.939ln(d)-0.835ln(h)) 15 4.38 0.90 1/d2.02 0.30

Stem 0.069d2.23 h0.566 3 23.6 0.97 1/d2h2 0.08

AGB 0.091d2.285 h0.473 3 24.7 0.96 1/ d2h2 0.75
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Figure 2.	Model predictions against observed data; (A) foliage, (B) branches, (C) stem and (D) total tree biomass for Eucalyptus 
dunnii (right) and Eucalypts grandis (left).
	 Predicciones del modelo versus datos observados; (a) follaje, (b) ramas, (c) tallo y (d) biomasa arbórea total para Eucalyptus dunnii 
(derecha) y Eucalyptus grandis (izquierda).

 

multaneously using joint-generalized least squares and 
restricting the coefficients of regression, ensuring additi-
vity. 

The NSUR method consisted first of fitting and selec-
ting the best models for each tree component, since the 
AGB model was a function of the independent variables 
used in each tree component model (table 3). The plots of 
NSUR residuals against predicted values and of predicted 
values against observed values, for both species, are pre-
sented in figures 3 and 4, respectively. 

The graphs of the residuals with weighting do not show 
any trend or heteroscedasticity. All parameters were signi-

ficant (P < 0.001) at the 95 % confidence level. All mo-
dels fitted total AGB data properly (R2 around 0.98). The 
model fit obtained for biomass of foliage for E. grandis 
(R2 0.78) was lower than that obtained for E. dunnii (R2 
0.90). The relative errors (RE%) of AGB, based on relative 
stem diameters for individual WLS and adjusted NSUR, 
were plotted (figure 5) and compared (table 4). For both 
species, AGB was estimated with a RE% below 1 % for 
NSUR. The WLS individual approach had a RE% value 
higher than 1 %.

The accuracy of the models was assessed by perfor-
ming a leave-one-out cross-validation of AGB (table 5). 
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Table 3.	 Biomass equation systems simultaneously fitted for tree biomass estimation by fractions (kg) and overall aboveground dry 
weight biomass (AGB, kg) for Eucalyptus grandis and Eucalyptus dunnii using NSUR regression. Independent variables are total 
height (h, m), diameter at breast height (d, cm), coefficient of correlation (R2) and root mean squared error (RMSE, kg).
	 Sistemas de ecuaciones ajustadas simultáneamente para la estimación de biomasa por fracciones (kg) y biomasa total sobre el suelo (AGB, 
kg) para Eucalyptus grandis y Eucalyptus dunnii utilizando regresión NSUR. Coeficiente de determinación ajustado (R2-adj), raíz del error cuadrático 
medio (RMSE, kg) y prueba de White.

Species Biomass fractions Biomass equation R2 RMSE

Foliage exp (-2.365 + 4.019ln(d)-2.084ln(h)) 0.78 11.6

E. grandis Branches exp (-1.775 + 3.651ln(d)-1.783ln(h)) 0.85 12.9

Stem 0.044d2.077 h0.831 0.98 23.1

AGB Stem + Foliage+ Branches 0.97 30.2

E. dunnii Foliage exp (-3.301 + 2.928ln(d)-0.731ln(h)) 0.90 4.7

Branches exp (-3.683 +2.773ln(d)-0.488ln(h)) 0.89 4.5

Stem 0.082d2.269 h0.478 0.97 22.5

AGB Stem + Foliage + Branches 0.97 23.9

NSUR yielded the best cross-validation results, with the 
lowest RMSEcv and best ME; similar values were registe-
red for the WLS individual approach.

DISCUSSION

In this study, we have developed consistent additive 
biomass functions for Eucalyptus dunnii and E. grandis 

Table 4.	 Mean and standard deviation (Sd) of relative error (%) 
to overall aboveground dry weight biomass (AGB. kg) for Eu-
calyptus grandis and Eucalyptus dunnii by method adjusted, in-
duvial equation by weighted least squares (WLS indi), total sum 
of components fitted by weighted least squares (WLS sum) and 
fitted by fitted simultaneously (SUR).
	 Valor medio y desvío estándar (Sd) del error relativo (%) con 
respecto a la biomasa total sobre el suelo (AGB, kg) para Eucalyptus 
grandis y Eucalyptus dunnii por método de ajuste: mínimos cuadrados 
ponderados individual (WLS indi), suma total de componentes ajustados 
por mínimos cuadrados ponderados (suma WLS) y ajuste simultánea-
mente (SUR).

Species Approach Mean Sd 

WLS indi 1.73 6.14

E. dunnii WLS sum 1.65 7.23

SUR 0.25 4.07

WLS indi 1.49 11.83

E. grandis WLS sum 1.11 10.67

SUR 0.42 8.26

Table 5.	 Result for Cross validation to overall aboveground 
dry weight biomass (AGB, kg) for Eucalyptus grandis and Eu-
calyptus dunnii models by method adjusted, induvial equation 
by weighted least squares (WLS indi), total sum of components 
adjusts by weighted least squares (WLS sum) and adjust by fitted 
simultaneously (SUR).
	 Resultado para la validación cruzada de biomasa total en peso 
seco sobre el suelo (AGB, kg) para Eucalyptus grandis y Eucalyptus 
dunnii por método ajustado: mínimos cuadrados ponderados individual 
(WLS indi), suma total de componentes ajustados por mínimos cuadra-
dos ponderados (WLS sum,) y simultáneo (SUR).

Species Approach Model 
efficienty

Root-mean-square-error for 
cross-validation (RSMEcv)

WLS indi 0.98 26.83

E. dunnii WLS sum 0.95 27.65

NSUR 0.98 26.48

WLS indi 0.97 34.07

E. grandis WLS sum 0.94 39.29

NSUR 0.97  34.14

in Uruguay. Models for all components and systems were 
fitted using the same procedure, which accounted for bio-
logical correlation between components. Several growth 
and yield model systems have been proposed for these 
species, although few allometric biomass equations are 
available for eucalypt plantations (Resquin et al. 2018). 
Most equations used for commercial forests of eucalypts 
and pine species in Uruguay derive from independent fit-
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Figure 3.	Residuals against predicted biomass (right) and predicted against observed data (left) by NSUR: (A) foliage, (B) branches, 
(C) stem and (D) total tree biomass, to E. dunnii.
	 Residuos versus valores de biomasa predichos (derecha) y predichos versus datos observados (izquierda) por NSUR: (A) hojas, (B) ramas, 
(C) tallo y (D) biomasa total de árboles, para E. dunnii.

 

tings. Individual approaches do not satisfy the condition 
of biological consistency, ensured by the restriction that 
the biomass estimates for components must be additive 
to equal the estimate of total biomass. Several approaches 
(Parresol 2001, Li et al. 2014, Bi et al. 2015) have empha-
sized the importance of establishing additive equations of 
biomass. Systems of biomass equations with tree diame-
ter and height as predictors are tools to provide biomass 
estimates for field inventories. Estimates for the stem and 
whole tree are more accurate, whereas branch and foliage 
biomass estimates are less accurate (Li et al. 2014, Bi et 
al. 2015).

Biomass allocation. Variation in biomass allocation among 
tree components is usually observed when comparing spe-
cies or trees of different ages. In this study, stem biomass 
was the major component of AGB, constituting more than 
half of the total tree biomass (88.5 % and 86.1 % for E. 
grandis and E. dunnii , respectively), while branch biomass 
represented 8.4 % and 5.4 % and foliage biomass 5.5 %  
and 6.1 % for E. grandis  and E. dunnii , respectively.

Individual tree component and AGB models. Once the di-
fferent linear and nonlinear models for each component 
and total tree biomass had been adjusted, the best model 
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Figure 4. 	Residuals against predicted biomass (right) and predict model against observed data (left) by NSUR: (A) foliage, (B) 
branches, (C) stem and (D) total tree biomass, to E. grandis.
	 Residuos versus biomasa pronosticada (derecha) y predichos del modelo contra datos observados (izquierda) por NSUR: (A) hojas, (B) 
ramas, (C) tallo y (D) biomasa total de árboles para E. grandis.

 

was selected in each case based on goodness-of-fit statis-
tics and graphical analyses. The predictive variables tested 
were D, h or both, d being a key predictor in growth and 
yield models as well as in biomass models. Models that 
include only d are simple in structure and require only ba-
sic forest inventory data (Wang 2006). Our results show 
that d and h had a strong positive relationship with all the 
biomass components evaluated; they were included as 
predictor variables in all allometric models and improved 
the predictive ability of biomass equations (Bi et al. 2015, 
Dong et al. 2015). Heteroscedasticity problems are inhe-
rent in biomass models since trees with higher d and h have 

more biomass than that presented by small trees. As shown 
in figure 1, the relationship between biomass and d and h 
is exponential. To deal with this issue, logarithmic trans-
formations are commonly applied in the modelling of tree 
biomass (Wang 2006). To back-transform biomass to its 
original scale, the use of a correction factor is common to 
correct for systematic bias introduced by anti-logarithmic 
transformation. This anti-logarithmic transformation leads 
to systematic overestimate of biomass (Dong et al. 2015). 
Furthermore, in a system of additive biomass equations, 
the additivity property of the system may not be achieved 
(Dong et al. 2015).We used weighted least-squares regres-
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Figure 5.	Relative error in AGB predictions: (A) individual equation, (B) components sum, (C) additive equation. For E. dunnii (right) 
and E. grandis (left) by stem diameter (cm), solid lines are smoothed errors using a lowess method.
	 Error relativo de las predicciones de AGB: (A) ecuación individual, (B) suma de componentes, (C) ecuación aditiva. E. dunnii (derecha) y 
E. grandis (izquierda) por diámetro de troncos (cm), las líneas continuas son errores suavizados utilizando un método lowess.

 

sion to fit individual models, thus accounting for inherent 
heteroscedasticity (Parresol 1999). Foliage and branches 
biomass models were less accurate and less precise than 
biomass models for the stem and AGB, probably due to the 
variability of the crown structure.

For both species, model [15] was selected to estimate 
foliage and branches biomass, and model [3] to estimate 
stem biomass (see Appendix). However, different models 
were selected for AGB. For stem biomass, both parame-
ters of model [3] were positive, meaning that stem bio-
mass was directly and positively related to d and H. For E. 
grandis, in the AGB model [22] the parameter estimated 
for h was positive, implying that, for the same d, taller 
trees have more above-stump stem biomass than that pre-
sented by shorter trees. For E. dunnii, model [3] shows that 
the parameters estimated for h and d were both positive, 

indicating that the estimate of AGB is superior in thick-
stemmed and tall trees.

Additive biomass equations. Biomass additivity is a desi-
rable characteristic of a system of equations for predic-
ting tree component and total tree biomass. Most biomass 
equations reported in literature are not additive and were 
developed separately for each biomass component (Lin et 
al. 2017, Resquin et al. 2018). The biomass additivity ap-
proach has been used by some researchers in the fitting of 
biomass equations (e.g. Riofrío et al. 2015, Kralicek et al. 
2017). However, there is no record of the use of NSUR in 
Uruguay to estimate tree AGB. Equations adjusted inde-
pendently generate biologically inconsistent results, which 
implies that models for the components biomass and total 
AGB should be comprised of systems of equations. Bio-
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mass components were expressed as an individual model, 
where each model was selected from a group of candidate 
models. The AGB model was a function of biomass com-
ponents, resulting in additivity; all the equations of the 
system had their own weighting function to ensure estima-
tes with minimum variance.

Our additive systems of biomass used only one cons-
traint on total tree biomass. The cross-equation error co-
rrelations between total tree biomass and components bio-
mass were accounted (Carvalho and Parresol 2003, Bi et al. 
2015). Once each biomass component had been individua-
lly adjusted, the models selected were simultaneously fitted 
using NSUR methodology. The results presented in table 3 
show high goodness of fit in all the components equation 
systems (by species) fitted with NSUR methodology. Com-
paring the two fitting methods (individual fitting and the 
NSUR approach), the statistics of fitting were similar (with 
small gains in RSME and R2 for the NSUR approach); 
however, residuals plots presented different trends (figures 
2-4). According to Sanquetta et al. (2019), when compa-
ring individual fitting and NSUR, it can be seen that both 
approaches have similar precision statistics. NSUR models 
should be used to predict total biomass and its fractions be-
cause biological consistency must be considered. For AGB, 
NSUR achieved an R2 value of approximately 98 % and 
improvement in the distribution of the residuals. Equations 
adjusted by means of OLS-WLS do not take into account 
contemporaneous correlations, which impairs the efficien-
cy of estimation. The inclusion of contemporaneous corre-
lations between the biomass of the components and total 
biomass in the fitting of equation systems through NSUR 
resulted in efficiency gain, by reduction of confidence and 
prediction intervals of biomass estimates (Parresol 1999). 

The classical individual approach to the fitting of bio-
mass equations ignores the inherent correlation among the 
biomass components measured in the same sample trees. 
Taking this correlation into account in the development 
of a system of additive biomass equations yields superior 
statistical efficiency (Parresol 2001). Some authors (Pa-
rresol 2001, Carvalho and Parresol 2003) have compared 
different methods of enforcing additivity, concluding that 
NSUR achieves more efficient estimates and should be the 
choice for additivity. In the present work, the simultaneous 
systems tended to slightly bias AGB estimates, by 0.25 %, 
0.42 % for E. dunnii and E. grandis respectively. Accor-
ding to Chave et al. (2005), despite estimation errors that 
can derive from the use of specific allometric models fitted 
using a small number of samples, such models are useful 
because of their ease of implementation. In our study, for 
both species, estimation by NSUR had a lower bias than 
that presented by the other methods, ranging from -7.9 to 
7.7 and from -11.8 to 24.7 for E. dunnii and E. grandis, 
respectively. This represents improvement over the tra-
ditional individual approach, which gave values ranging 
from -18.3 to 13.7 for E. dunnii and from -13.2 to 48.5 for 
E. grandis, and the WLS sum approach, with ranges of 

-18.3 to 21.9 and -16.7 to 35.2 for E. dunnii and E. gran-
dis, respectively. The WLS method tended to overestima-
te AGB. In general, the higher overestimation yielded by 
WLS approaches compared to NSUR reflects the gain in 
prediction quality obtained when applying the latter.  

To improve the overall biomass stocks estimation and 
its components, an additive system was proposed which 
ensures that the estimation functions of components were 
compatible with the total biomass estimated. The model 
fit and validation statistics indicate that the systems of 
equations developed in this study will contribute to the 
accurate estimation of total biomass. The NSUR method 
is not intended to improve the precision of AGB estima-
tes, but rather to reconcile estimates of total biomass and 
the sum of biomass fractions (Coutinho et al. 2018). With 
the application of NSUR, we have developed full allome-
tric models, which can be used to compute the biomass of 
components for trees of interest.

CONCLUSIONS

This study represents a first attempt at quantifying total 
tree biomass in Uruguay through the use of a simultaneously 
fitted system of weighted nonlinear equations. Our approach, 
fitting additive biomass functions, led to a consistent set of 
additive biomass functions for two of the most relevant Eu-
calyptus species in Uruguay. In this work the aboveground 
biomass of E. grandis and E. dunnii was estimated using 
an NSUR approach; to our knowledge, this represents the 
first attempt at quantifying total tree biomass with a simul-
taneously fitted system of weighted nonlinear equations for 
forests in Uruguay. The correlation matrix among biomass 
equations shows that strong inherent correlations existed 
among the biomass components measured in the same sam-
ple trees. By taking into account this cross-equation error 
correlation, methods like NSUR result in more efficient esti-
mation of the system of equations than do classical methods. 
The allometric models adjusted using NSUR methodology 
provided accurate biomass estimates that guarantee additivi-
ty among biomass components for E. grandis and E. dunnii 
in Uruguay. Simultaneous fit provided a slight improvement 
in most goodness-of-fit statistics. This ensures the correct 
performance of the additive system in new samples. The 
structural characteristics of models improve the predictive 
capacity and extend their range of application, since they 
include total height and diameter as explanatory variables. 
These models can be implemented in procedures that requi-
re a simple and efficient method for estimation of biomass.
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Appendix

Cuadro S1.	Biomass models tested for different tree biomass components (Wi, kg); with diameter at breast height (d, cm) and total 
height (h, m) as dependent variables; βi model parameters.
	 Modelos de biomasa evaluados para diferentes componentes de biomasa arbórea (Wi, kg); con diámetro a la altura del pecho (d, cm) y 
altura total (h, m) como variables dependientes; βi Parámetros del modelo.

Equation number Model 

1

2

3

4

5 + 

6  +  + 

7 +  + 

8  + ( )

9  + 

10  +  +

11  +  + 

12 ( +  +  )

13 ( + )

14 ( )

15  + + 

16 + 

17 +  + 

18

19 + + 

20  + ( )

21 ( )

22  (  + )

23 + (d )

24 ( / (  + /h))

25  +  + +  + + 

26 +  + * 

27  + ( ))


